首页|新闻|图片|评论|共青团|娱乐|时尚|财经|军事|体育|创业就业|高校|旅游|发现|视频|游戏|汽车|青春励志
77.3%受访者赞同隐形资助贫困生

发稿时间:2017-08-24 08:34:30 来源: 中国青年报 中国青年网

  “具体而言,大数据分析的数据源主要取自校内消费数据,例如食堂饭卡、超市消费、健身馆购物、乘坐校际班车、水卡,分析学生的消费水平,这类数据主要记录了学生的消费金额、消费时间以及消费地点等信息。除了消费数据,系统还结合学生的勤工助学、获奖学金情况、社交特征、行为轨迹、借阅兴趣和历史特征等多个维度进行综合分析挖掘。”聂敏说,这些数据经过整合与清洗后,通过一系列精密的算法,系统判定学生的困难指数(1~9),困难指数越高则代表越贫困。学生被分为不困难、一般困难、困难和特别困难4大类。最终,大数据结果结合线下个别访谈、辅导员评价,共同给出了这份全校贫困学生名单,从而发放隐形补助。

  与原有的申请资助方式相比,68.7%的受访者认为隐形资助维护了受助学生的尊严,60.8%的受访者觉得保护了受助学生的家庭隐私,54.2%的受访者认为可以帮助到更多不愿主动申请资助的学生,34.5%的受访者认为能提高贫困认定工作的效率,25.1%的受访者认为更有利于实现资助公平。

  58.1%受访者希望提高大数据在学生资助上的应用力度

  “隐形资助也太人性化了吧!”刘悦听说有隐形资助的方式后,非常希望自己所在的学校也能尝试,“感觉这样的方式非常贴心,能够真正帮助到需要帮助的同学”。

  但刘悦也表达了自己的担忧,“有些同学的家庭条件确实很艰苦,很需要资助,但是在吃住方面又不会很拮据,能够做到吃饱穿暖。这部分同学会不会被忽视呢?”

  周文升在2016年冬天也收到了60元钱的隐形资助。但这只是学校“误会”了,周文升并非家庭条件不好,而是很少去食堂吃饭。“对隐形资助的发放名额,需要有更严谨和更人性化的考量”。

  要提高隐形资助的精确性,68.5%的受访者建议借助“大数据”和科学评估,对学生家庭情况进行比较分析;66.3%的受访者建议通过查阅档案、实地走访等形式,主动摸排家庭经济困难学生情况; 51.4%的受访者建议在保护学生隐私的前提下适当公开资助信息,接受群众监督。

  周文升了解发现,学校的隐形补助是以校园卡消费记录为依据。“但我觉得不应该只考虑校园卡消费,辅导员也要和学生加强交流,发现学生有困难及时予以帮助”。

  聂敏表示,目前,电子科技大学采用的智慧助困系统的准确率已经达到80%以上。去年,学校通过这套系统挖掘出校内最困难的200名学生。为了验证正确性,将这些名单与各学院辅导员掌握的学生资料一一对比,发现名单100%吻合。从去年开始,大数据研究中心利用智慧助困系统,通过精确的大数据分析技术,帮助电子科大累计挖掘出300名隐形贫困生,资助总额达11万元。

  要更好地资助贫困生,58.1%的受访者建议提高大数据在学生资助上的应用力度,57.2%的受访者建议真正把资助对象的尊严放在心上,52.2%的受访者建议多开发隐形资助的方式,50.6%的受访者建议保护贫困生个人隐私,32.2%的受访者建议严肃惩戒骗取补助的人。

  王励希望,学校能够将传统评定资助方式和隐形资助结合起来,并加大隐形资助的覆盖面积。

  刘悦认为,隐形资助的方式值得推广,同时希望资助力度能够加大,资助对象和数额能够增加。

  “有了这些精确的信息,学校一方面可以有针对性地取消高消费、伪困难学生的受助资格,另一方面对经济特别困难、生活艰苦的同学发放临时困难补助。大数据将帮助学校发现更多隐性贫困的学生,助力高校人文关怀。”聂敏说。

责任编辑:崔宁宁
返回首页>>
热图

排行

热搜

排行

关于我们联系我们广告服务人才招聘中国互联网举报中心 Youth.cn. 请发送qnb至10658000 订阅手机青年报

共青团中央主办 共青团中央网络影视中心承办 版权所有:中国青年网
信息网络传播视听节目许可证0105108号 京|ICP备11020872号-17 京公网安备110105007246
x